### What problem does this PR solve? Refactor Document API ### Type of change - [x] Refactoring Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
257 lines
11 KiB
Python
257 lines
11 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from typing import List
|
|
|
|
import requests
|
|
|
|
from .modules.chat import Chat
|
|
from .modules.chunk import Chunk
|
|
from .modules.dataset import DataSet
|
|
from .modules.document import Document
|
|
|
|
|
|
class RAGFlow:
|
|
def __init__(self, user_key, base_url, version='v1'):
|
|
"""
|
|
api_url: http://<host_address>/api/v1
|
|
"""
|
|
self.user_key = user_key
|
|
self.api_url = f"{base_url}/api/{version}"
|
|
self.authorization_header = {"Authorization": "{} {}".format("Bearer", self.user_key)}
|
|
|
|
def post(self, path, json=None, stream=False, files=None):
|
|
res = requests.post(url=self.api_url + path, json=json, headers=self.authorization_header, stream=stream,files=files)
|
|
return res
|
|
|
|
def get(self, path, params=None, json=None):
|
|
res = requests.get(url=self.api_url + path, params=params, headers=self.authorization_header,json=json)
|
|
return res
|
|
|
|
def delete(self, path, json):
|
|
res = requests.delete(url=self.api_url + path, json=json, headers=self.authorization_header)
|
|
return res
|
|
|
|
def put(self, path, json):
|
|
res = requests.put(url=self.api_url + path, json= json,headers=self.authorization_header)
|
|
return res
|
|
|
|
def create_dataset(self, name: str, avatar: str = "", description: str = "", language: str = "English",
|
|
permission: str = "me",
|
|
document_count: int = 0, chunk_count: int = 0, parse_method: str = "naive",
|
|
parser_config: DataSet.ParserConfig = None) -> DataSet:
|
|
if parser_config is None:
|
|
parser_config = DataSet.ParserConfig(self, {"chunk_token_count": 128, "layout_recognize": True,
|
|
"delimiter": "\n!?。;!?", "task_page_size": 12})
|
|
parser_config = parser_config.to_json()
|
|
res = self.post("/dataset",
|
|
{"name": name, "avatar": avatar, "description": description, "language": language,
|
|
"permission": permission,
|
|
"document_count": document_count, "chunk_count": chunk_count, "parse_method": parse_method,
|
|
"parser_config": parser_config
|
|
}
|
|
)
|
|
res = res.json()
|
|
if res.get("code") == 0:
|
|
return DataSet(self, res["data"])
|
|
raise Exception(res["message"])
|
|
|
|
def delete_datasets(self, ids: List[str] = None, names: List[str] = None):
|
|
res = self.delete("/dataset",{"ids": ids, "names": names})
|
|
res=res.json()
|
|
if res.get("code") != 0:
|
|
raise Exception(res["message"])
|
|
|
|
def list_datasets(self, page: int = 1, page_size: int = 1024, orderby: str = "create_time", desc: bool = True,
|
|
id: str = None, name: str = None) -> \
|
|
List[DataSet]:
|
|
res = self.get("/dataset",
|
|
{"page": page, "page_size": page_size, "orderby": orderby, "desc": desc, "id": id, "name": name})
|
|
res = res.json()
|
|
result_list = []
|
|
if res.get("code") == 0:
|
|
for data in res['data']:
|
|
result_list.append(DataSet(self, data))
|
|
return result_list
|
|
raise Exception(res["message"])
|
|
|
|
def create_chat(self, name: str = "assistant", avatar: str = "path", knowledgebases: List[DataSet] = [],
|
|
llm: Chat.LLM = None, prompt: Chat.Prompt = None) -> Chat:
|
|
datasets = []
|
|
for dataset in knowledgebases:
|
|
datasets.append(dataset.to_json())
|
|
|
|
if llm is None:
|
|
llm = Chat.LLM(self, {"model_name": None,
|
|
"temperature": 0.1,
|
|
"top_p": 0.3,
|
|
"presence_penalty": 0.4,
|
|
"frequency_penalty": 0.7,
|
|
"max_tokens": 512, })
|
|
if prompt is None:
|
|
prompt = Chat.Prompt(self, {"similarity_threshold": 0.2,
|
|
"keywords_similarity_weight": 0.7,
|
|
"top_n": 8,
|
|
"variables": [{
|
|
"key": "knowledge",
|
|
"optional": True
|
|
}], "rerank_model": "",
|
|
"empty_response": None,
|
|
"opener": None,
|
|
"show_quote": True,
|
|
"prompt": None})
|
|
if prompt.opener is None:
|
|
prompt.opener = "Hi! I'm your assistant, what can I do for you?"
|
|
if prompt.prompt is None:
|
|
prompt.prompt = (
|
|
"You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. "
|
|
"Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, "
|
|
"your answer must include the sentence 'The answer you are looking for is not found in the knowledge base!' "
|
|
"Answers need to consider chat history.\nHere is the knowledge base:\n{knowledge}\nThe above is the knowledge base."
|
|
)
|
|
|
|
temp_dict = {"name": name,
|
|
"avatar": avatar,
|
|
"knowledgebases": datasets,
|
|
"llm": llm.to_json(),
|
|
"prompt": prompt.to_json()}
|
|
res = self.post("/chat", temp_dict)
|
|
res = res.json()
|
|
if res.get("code") == 0:
|
|
return Chat(self, res["data"])
|
|
raise Exception(res["message"])
|
|
|
|
def delete_chats(self,ids: List[str] = None,names: List[str] = None ) -> bool:
|
|
res = self.delete('/chat',
|
|
{"ids":ids, "names":names})
|
|
res = res.json()
|
|
if res.get("code") != 0:
|
|
raise Exception(res["message"])
|
|
|
|
def list_chats(self, page: int = 1, page_size: int = 1024, orderby: str = "create_time", desc: bool = True,
|
|
id: str = None, name: str = None) -> List[Chat]:
|
|
res = self.get("/chat",{"page": page, "page_size": page_size, "orderby": orderby, "desc": desc, "id": id, "name": name})
|
|
res = res.json()
|
|
result_list = []
|
|
if res.get("code") == 0:
|
|
for data in res['data']:
|
|
result_list.append(Chat(self, data))
|
|
return result_list
|
|
raise Exception(res["message"])
|
|
|
|
|
|
|
|
def async_parse_documents(self, doc_ids):
|
|
"""
|
|
Asynchronously start parsing multiple documents without waiting for completion.
|
|
|
|
:param doc_ids: A list containing multiple document IDs.
|
|
"""
|
|
try:
|
|
if not doc_ids or not isinstance(doc_ids, list):
|
|
raise ValueError("doc_ids must be a non-empty list of document IDs")
|
|
|
|
data = {"document_ids": doc_ids, "run": 1}
|
|
|
|
res = self.post(f'/doc/run', data)
|
|
|
|
if res.status_code != 200:
|
|
raise Exception(f"Failed to start async parsing for documents: {res.text}")
|
|
|
|
print(f"Async parsing started successfully for documents: {doc_ids}")
|
|
|
|
except Exception as e:
|
|
print(f"Error occurred during async parsing for documents: {str(e)}")
|
|
raise
|
|
|
|
def async_cancel_parse_documents(self, doc_ids):
|
|
"""
|
|
Cancel the asynchronous parsing of multiple documents.
|
|
|
|
:param doc_ids: A list containing multiple document IDs.
|
|
"""
|
|
try:
|
|
if not doc_ids or not isinstance(doc_ids, list):
|
|
raise ValueError("doc_ids must be a non-empty list of document IDs")
|
|
data = {"document_ids": doc_ids, "run": 2}
|
|
res = self.post(f'/doc/run', data)
|
|
|
|
if res.status_code != 200:
|
|
raise Exception(f"Failed to cancel async parsing for documents: {res.text}")
|
|
|
|
print(f"Async parsing canceled successfully for documents: {doc_ids}")
|
|
|
|
except Exception as e:
|
|
print(f"Error occurred during canceling parsing for documents: {str(e)}")
|
|
raise
|
|
|
|
def retrieval(self,
|
|
question,
|
|
datasets=None,
|
|
documents=None,
|
|
offset=0,
|
|
limit=6,
|
|
similarity_threshold=0.1,
|
|
vector_similarity_weight=0.3,
|
|
top_k=1024):
|
|
"""
|
|
Perform document retrieval based on the given parameters.
|
|
|
|
:param question: The query question.
|
|
:param datasets: A list of datasets (optional, as documents may be provided directly).
|
|
:param documents: A list of documents (if specific documents are provided).
|
|
:param offset: Offset for the retrieval results.
|
|
:param limit: Maximum number of retrieval results.
|
|
:param similarity_threshold: Similarity threshold.
|
|
:param vector_similarity_weight: Weight of vector similarity.
|
|
:param top_k: Number of top most similar documents to consider (for pre-filtering or ranking).
|
|
|
|
Note: This is a hypothetical implementation and may need adjustments based on the actual backend service API.
|
|
"""
|
|
try:
|
|
data = {
|
|
"question": question,
|
|
"datasets": datasets if datasets is not None else [],
|
|
"documents": [doc.id if hasattr(doc, 'id') else doc for doc in
|
|
documents] if documents is not None else [],
|
|
"offset": offset,
|
|
"limit": limit,
|
|
"similarity_threshold": similarity_threshold,
|
|
"vector_similarity_weight": vector_similarity_weight,
|
|
"top_k": top_k,
|
|
"knowledgebase_id": datasets,
|
|
}
|
|
|
|
# Send a POST request to the backend service (using requests library as an example, actual implementation may vary)
|
|
res = self.post(f'/doc/retrieval_test', data)
|
|
|
|
# Check the response status code
|
|
if res.status_code == 200:
|
|
res_data = res.json()
|
|
if res_data.get("retmsg") == "success":
|
|
chunks = []
|
|
for chunk_data in res_data["data"].get("chunks", []):
|
|
chunk = Chunk(self, chunk_data)
|
|
chunks.append(chunk)
|
|
return chunks
|
|
else:
|
|
raise Exception(f"Error fetching chunks: {res_data.get('retmsg')}")
|
|
else:
|
|
raise Exception(f"API request failed with status code {res.status_code}")
|
|
|
|
except Exception as e:
|
|
print(f"An error occurred during retrieval: {e}")
|
|
raise
|