404 lines
16 KiB
Python
404 lines
16 KiB
Python
#
|
||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
#
|
||
import json
|
||
import re
|
||
import traceback
|
||
import logging
|
||
from copy import deepcopy
|
||
from api.db.services.user_service import UserTenantService
|
||
from flask import request, Response
|
||
from flask_login import login_required, current_user
|
||
|
||
from api.db import LLMType
|
||
from api.db.services.dialog_service import DialogService, ConversationService, chat, ask
|
||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||
from api.db.services.llm_service import LLMBundle, TenantService, TenantLLMService
|
||
from api import settings
|
||
from api.utils.api_utils import get_json_result
|
||
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
|
||
from graphrag.mind_map_extractor import MindMapExtractor
|
||
|
||
|
||
@manager.route('/set', methods=['POST'])
|
||
@login_required
|
||
def set_conversation():
|
||
req = request.json
|
||
conv_id = req.get("conversation_id")
|
||
is_new = req.get("is_new")
|
||
del req["is_new"]
|
||
if not is_new:
|
||
del req["conversation_id"]
|
||
try:
|
||
if not ConversationService.update_by_id(conv_id, req):
|
||
return get_data_error_result(message="Conversation not found!")
|
||
e, conv = ConversationService.get_by_id(conv_id)
|
||
if not e:
|
||
return get_data_error_result(
|
||
message="Fail to update a conversation!")
|
||
conv = conv.to_dict()
|
||
return get_json_result(data=conv)
|
||
except Exception as e:
|
||
return server_error_response(e)
|
||
|
||
try:
|
||
e, dia = DialogService.get_by_id(req["dialog_id"])
|
||
if not e:
|
||
return get_data_error_result(message="Dialog not found")
|
||
conv = {
|
||
"id": conv_id,
|
||
"dialog_id": req["dialog_id"],
|
||
"name": req.get("name", "New conversation"),
|
||
"message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}]
|
||
}
|
||
ConversationService.save(**conv)
|
||
e, conv = ConversationService.get_by_id(conv["id"])
|
||
if not e:
|
||
return get_data_error_result(message="Fail to new a conversation!")
|
||
conv = conv.to_dict()
|
||
return get_json_result(data=conv)
|
||
except Exception as e:
|
||
return server_error_response(e)
|
||
|
||
|
||
@manager.route('/get', methods=['GET'])
|
||
@login_required
|
||
def get():
|
||
conv_id = request.args["conversation_id"]
|
||
try:
|
||
e, conv = ConversationService.get_by_id(conv_id)
|
||
if not e:
|
||
return get_data_error_result(message="Conversation not found!")
|
||
tenants = UserTenantService.query(user_id=current_user.id)
|
||
for tenant in tenants:
|
||
if DialogService.query(tenant_id=tenant.tenant_id, id=conv.dialog_id):
|
||
break
|
||
else:
|
||
return get_json_result(
|
||
data=False, message='Only owner of conversation authorized for this operation.',
|
||
code=settings.RetCode.OPERATING_ERROR)
|
||
conv = conv.to_dict()
|
||
return get_json_result(data=conv)
|
||
except Exception as e:
|
||
return server_error_response(e)
|
||
|
||
|
||
@manager.route('/rm', methods=['POST'])
|
||
@login_required
|
||
def rm():
|
||
conv_ids = request.json["conversation_ids"]
|
||
try:
|
||
for cid in conv_ids:
|
||
exist, conv = ConversationService.get_by_id(cid)
|
||
if not exist:
|
||
return get_data_error_result(message="Conversation not found!")
|
||
tenants = UserTenantService.query(user_id=current_user.id)
|
||
for tenant in tenants:
|
||
if DialogService.query(tenant_id=tenant.tenant_id, id=conv.dialog_id):
|
||
break
|
||
else:
|
||
return get_json_result(
|
||
data=False, message='Only owner of conversation authorized for this operation.',
|
||
code=settings.RetCode.OPERATING_ERROR)
|
||
ConversationService.delete_by_id(cid)
|
||
return get_json_result(data=True)
|
||
except Exception as e:
|
||
return server_error_response(e)
|
||
|
||
|
||
@manager.route('/list', methods=['GET'])
|
||
@login_required
|
||
def list_convsersation():
|
||
dialog_id = request.args["dialog_id"]
|
||
try:
|
||
if not DialogService.query(tenant_id=current_user.id, id=dialog_id):
|
||
return get_json_result(
|
||
data=False, message='Only owner of dialog authorized for this operation.',
|
||
code=settings.RetCode.OPERATING_ERROR)
|
||
if 0:
|
||
# 20250127 cyx 修改,如果不限定返回的行数,内容太大了,会堵塞上传
|
||
convs = ConversationService.query(
|
||
dialog_id=dialog_id,
|
||
order_by=ConversationService.model.create_time,
|
||
reverse=True)
|
||
convs = [d.to_dict() for d in convs]
|
||
else:
|
||
id = request.args.get("id")
|
||
name = request.args.get("name")
|
||
page_number = int(request.args.get("current_page", 1))
|
||
items_per_page = int(request.args.get("page_size", 40))
|
||
orderby = request.args.get("orderby", "create_time")
|
||
if request.args.get("desc") == "False" or request.args.get("desc") == "false":
|
||
desc = False
|
||
else:
|
||
desc = True
|
||
# 获取模型的所有字段
|
||
all_fields = ConversationService.model._meta.sorted_field_names
|
||
|
||
# 定义需要排除的字段
|
||
exclude_fields = {"message", "reference"}
|
||
|
||
# 动态生成 columns,排除指定字段
|
||
cols = [field for field in all_fields if field not in exclude_fields]
|
||
|
||
total, convs = ConversationService.get_list(dialog_id, page_number, items_per_page, orderby, desc, id, name ,cols)
|
||
for conv in convs:
|
||
conv['name'] = f"{conv['name'] } {conv['update_date']}"
|
||
# logging.info(f"list_convsersation--{dialog_id} return {len(convs)}") # cyx
|
||
return get_json_result(data={'total':total,'data':convs})
|
||
except Exception as e:
|
||
return server_error_response(e)
|
||
|
||
|
||
@manager.route('/completion', methods=['POST'])
|
||
@login_required
|
||
@validate_request("conversation_id", "messages")
|
||
def completion():
|
||
req = request.json
|
||
msg = []
|
||
for m in req["messages"]:
|
||
if m["role"] == "system":
|
||
continue
|
||
if m["role"] == "assistant" and not msg:
|
||
continue
|
||
msg.append(m)
|
||
message_id = msg[-1].get("id")
|
||
try:
|
||
e, conv = ConversationService.get_by_id(req["conversation_id"])
|
||
if not e:
|
||
return get_data_error_result(message="Conversation not found!")
|
||
conv.message = deepcopy(req["messages"])
|
||
e, dia = DialogService.get_by_id(conv.dialog_id)
|
||
if not e:
|
||
return get_data_error_result(message="Dialog not found!")
|
||
del req["conversation_id"]
|
||
del req["messages"]
|
||
|
||
if not conv.reference:
|
||
conv.reference = []
|
||
conv.message.append({"role": "assistant", "content": "", "id": message_id})
|
||
conv.reference.append({"chunks": [], "doc_aggs": []})
|
||
|
||
def fillin_conv(ans):
|
||
nonlocal conv, message_id
|
||
if not conv.reference:
|
||
conv.reference.append(ans["reference"])
|
||
else:
|
||
conv.reference[-1] = ans["reference"]
|
||
conv.message[-1] = {"role": "assistant", "content": ans["answer"],
|
||
"id": message_id, "prompt": ans.get("prompt", "")}
|
||
ans["id"] = message_id
|
||
|
||
def stream():
|
||
nonlocal dia, msg, req, conv
|
||
try:
|
||
for ans in chat(dia, msg, True, **req):
|
||
fillin_conv(ans)
|
||
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
|
||
ConversationService.update_by_id(conv.id, conv.to_dict())
|
||
except Exception as e:
|
||
traceback.print_exc()
|
||
yield "data:" + json.dumps({"code": 500, "message": str(e),
|
||
"data": {"answer": "**ERROR**: " + str(e), "reference": []}},
|
||
ensure_ascii=False) + "\n\n"
|
||
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
|
||
|
||
if req.get("stream", True):
|
||
resp = Response(stream(), mimetype="text/event-stream")
|
||
resp.headers.add_header("Cache-control", "no-cache")
|
||
resp.headers.add_header("Connection", "keep-alive")
|
||
resp.headers.add_header("X-Accel-Buffering", "no")
|
||
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
||
return resp
|
||
|
||
else:
|
||
answer = None
|
||
for ans in chat(dia, msg, **req):
|
||
answer = ans
|
||
fillin_conv(ans)
|
||
ConversationService.update_by_id(conv.id, conv.to_dict())
|
||
break
|
||
return get_json_result(data=answer)
|
||
except Exception as e:
|
||
return server_error_response(e)
|
||
|
||
|
||
@manager.route('/tts', methods=['POST'])
|
||
@login_required
|
||
def tts():
|
||
req = request.json
|
||
text = req["text"]
|
||
|
||
tenants = TenantService.get_info_by(current_user.id)
|
||
if not tenants:
|
||
return get_data_error_result(message="Tenant not found!")
|
||
|
||
tts_id = tenants[0]["tts_id"]
|
||
if not tts_id:
|
||
return get_data_error_result(message="No default TTS model is set")
|
||
|
||
tts_mdl = LLMBundle(tenants[0]["tenant_id"], LLMType.TTS, tts_id)
|
||
|
||
def stream_audio():
|
||
try:
|
||
for txt in re.split(r"[,。/《》?;:!\n\r:;]+", text):
|
||
for chunk in tts_mdl.tts(txt):
|
||
yield chunk
|
||
except Exception as e:
|
||
yield ("data:" + json.dumps({"code": 500, "message": str(e),
|
||
"data": {"answer": "**ERROR**: " + str(e)}},
|
||
ensure_ascii=False)).encode('utf-8')
|
||
|
||
resp = Response(stream_audio(), mimetype="audio/mpeg")
|
||
resp.headers.add_header("Cache-Control", "no-cache")
|
||
resp.headers.add_header("Connection", "keep-alive")
|
||
resp.headers.add_header("X-Accel-Buffering", "no")
|
||
|
||
return resp
|
||
|
||
|
||
@manager.route('/delete_msg', methods=['POST'])
|
||
@login_required
|
||
@validate_request("conversation_id", "message_id")
|
||
def delete_msg():
|
||
req = request.json
|
||
e, conv = ConversationService.get_by_id(req["conversation_id"])
|
||
if not e:
|
||
return get_data_error_result(message="Conversation not found!")
|
||
|
||
conv = conv.to_dict()
|
||
for i, msg in enumerate(conv["message"]):
|
||
if req["message_id"] != msg.get("id", ""):
|
||
continue
|
||
assert conv["message"][i + 1]["id"] == req["message_id"]
|
||
conv["message"].pop(i)
|
||
conv["message"].pop(i)
|
||
conv["reference"].pop(max(0, i // 2 - 1))
|
||
break
|
||
|
||
ConversationService.update_by_id(conv["id"], conv)
|
||
return get_json_result(data=conv)
|
||
|
||
|
||
@manager.route('/thumbup', methods=['POST'])
|
||
@login_required
|
||
@validate_request("conversation_id", "message_id")
|
||
def thumbup():
|
||
req = request.json
|
||
e, conv = ConversationService.get_by_id(req["conversation_id"])
|
||
if not e:
|
||
return get_data_error_result(message="Conversation not found!")
|
||
up_down = req.get("set")
|
||
feedback = req.get("feedback", "")
|
||
conv = conv.to_dict()
|
||
for i, msg in enumerate(conv["message"]):
|
||
if req["message_id"] == msg.get("id", "") and msg.get("role", "") == "assistant":
|
||
if up_down:
|
||
msg["thumbup"] = True
|
||
if "feedback" in msg: del msg["feedback"]
|
||
else:
|
||
msg["thumbup"] = False
|
||
if feedback: msg["feedback"] = feedback
|
||
break
|
||
|
||
ConversationService.update_by_id(conv["id"], conv)
|
||
return get_json_result(data=conv)
|
||
|
||
|
||
@manager.route('/ask', methods=['POST'])
|
||
@login_required
|
||
@validate_request("question", "kb_ids")
|
||
def ask_about():
|
||
req = request.json
|
||
uid = current_user.id
|
||
|
||
def stream():
|
||
nonlocal req, uid
|
||
try:
|
||
for ans in ask(req["question"], req["kb_ids"], uid):
|
||
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
|
||
except Exception as e:
|
||
yield "data:" + json.dumps({"code": 500, "message": str(e),
|
||
"data": {"answer": "**ERROR**: " + str(e), "reference": []}},
|
||
ensure_ascii=False) + "\n\n"
|
||
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
|
||
|
||
resp = Response(stream(), mimetype="text/event-stream")
|
||
resp.headers.add_header("Cache-control", "no-cache")
|
||
resp.headers.add_header("Connection", "keep-alive")
|
||
resp.headers.add_header("X-Accel-Buffering", "no")
|
||
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
||
return resp
|
||
|
||
|
||
@manager.route('/mindmap', methods=['POST'])
|
||
@login_required
|
||
@validate_request("question", "kb_ids")
|
||
def mindmap():
|
||
req = request.json
|
||
kb_ids = req["kb_ids"]
|
||
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
|
||
if not e:
|
||
return get_data_error_result(message="Knowledgebase not found!")
|
||
|
||
embd_mdl = TenantLLMService.model_instance(
|
||
kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
|
||
chat_mdl = LLMBundle(current_user.id, LLMType.CHAT)
|
||
ranks = settings.retrievaler.retrieval(req["question"], embd_mdl, kb.tenant_id, kb_ids, 1, 12,
|
||
0.3, 0.3, aggs=False)
|
||
mindmap = MindMapExtractor(chat_mdl)
|
||
mind_map = mindmap([c["content_with_weight"] for c in ranks["chunks"]]).output
|
||
if "error" in mind_map:
|
||
return server_error_response(Exception(mind_map["error"]))
|
||
return get_json_result(data=mind_map)
|
||
|
||
|
||
@manager.route('/related_questions', methods=['POST'])
|
||
@login_required
|
||
@validate_request("question")
|
||
def related_questions():
|
||
req = request.json
|
||
question = req["question"]
|
||
chat_mdl = LLMBundle(current_user.id, LLMType.CHAT)
|
||
prompt = """
|
||
Objective: To generate search terms related to the user's search keywords, helping users find more valuable information.
|
||
Instructions:
|
||
- Based on the keywords provided by the user, generate 5-10 related search terms.
|
||
- Each search term should be directly or indirectly related to the keyword, guiding the user to find more valuable information.
|
||
- Use common, general terms as much as possible, avoiding obscure words or technical jargon.
|
||
- Keep the term length between 2-4 words, concise and clear.
|
||
- DO NOT translate, use the language of the original keywords.
|
||
|
||
### Example:
|
||
Keywords: Chinese football
|
||
Related search terms:
|
||
1. Current status of Chinese football
|
||
2. Reform of Chinese football
|
||
3. Youth training of Chinese football
|
||
4. Chinese football in the Asian Cup
|
||
5. Chinese football in the World Cup
|
||
|
||
Reason:
|
||
- When searching, users often only use one or two keywords, making it difficult to fully express their information needs.
|
||
- Generating related search terms can help users dig deeper into relevant information and improve search efficiency.
|
||
- At the same time, related terms can also help search engines better understand user needs and return more accurate search results.
|
||
|
||
"""
|
||
ans = chat_mdl.chat(prompt, [{"role": "user", "content": f"""
|
||
Keywords: {question}
|
||
Related search terms:
|
||
"""}], {"temperature": 0.9})
|
||
return get_json_result(data=[re.sub(r"^[0-9]\. ", "", a) for a in ans.split("\n") if re.match(r"^[0-9]\. ", a)])
|